gridcells.analysis.info
 Informationtheoretical analysis¶
The info
module contains routines related to
informationtheoretic analysis of data related to grid cells.
Functions¶
information_rate (rate_map, px) 
Compute information rate of a cell given variable x. 
information_specificity (rate_map, px) 
Compute the ‘specificity’ of the cell firing rate to a variable X. 

gridcells.analysis.info.
information_rate
(rate_map, px)[source]¶ Compute information rate of a cell given variable x.
A simple algorithm devised by [R3]. This computes the spatial information rate of cell spikes given variable x (e.g. position, head direction) in bits/second.
Parameters: rate_map : numpy.ndarray
A firing rate map, any number of dimensions. If units are in Hz, then the information rate will be in bits/s.
px : numpy.ndarray
Probability density function for variable
x
.px.shape
must be equalrate_maps.shape
Returns: I : float
Information rate.
Notes
If you need information in bits/spike, you need to divide the information rate by the average firing rate of the cell.
The firing rate map, in positions that are valid within the arena, may contains NaN numbers. In that case, the firing rate in these positions in
rate_map
will be set to 0.References
[R3] (1, 2) Skaggs, W.E. et al., 1993. An InformationTheoretic Approach to Deciphering the Hippocampal Code. In Advances in Neural Information Processing Systems 5. pp. 10301037.

gridcells.analysis.info.
information_specificity
(rate_map, px)[source]¶ Compute the ‘specificity’ of the cell firing rate to a variable X.
Compute
information_rate()
for this cell and divide by the average firing rate of the cell. See [R4] for more information.Parameters: rate_map : numpy.ndarray
A firing rate map, any number of dimensions.
px : numpy.ndarray
Probability density function for variable
x
.px.shape
must be equalrate_maps.shape
Returns: I : float
Information in bits/spike.
References
[R4] (1, 2) Skaggs, W.E. et al., 1993. An InformationTheoretic Approach to Deciphering the Hippocampal Code. In Advances in Neural Information Processing Systems 5. pp. 10301037.